Chapter 13: Oscillatory Motion
From Part Two of the Textbook

Tuesday March 31st

‘Review: Simple Harmonic Motion (SHM)

‘Review: Hooke's Law and SHM

‘Energy in SHM

‘The Simple Pendulum

‘Damped Harmonic Motion

‘Examples, demonstrations and iclicker

-If time at end (unlikely), one more solution to mid-term

* Final Mini Exam next week on Thursday (April 9)
* Will cover oscillations and waves (this week/next LONCAPA)

Reading: up to page 218 in Ch. 13



Review: Simple Harmonic Motion

* The simplest possible form of harmonic motion is called Simple
Harmonic Motion (SHM).

* This term implies that the periodic motion is a sinusoidal (or cosine)

function of time, Displacemnt
at time {
X Phase -

A f—Z - \ X
\\ //\ x(t)=A cos (wt+¢)
2 0 ‘ Time (¢) /sp_z )
»% AL \\\/ [ / /
- Amplitude Time |
*We can find the relationship between Angular Phase
@ and T in the following way. frequency cons}tam

: . , or phase
»Since the motion repeats itself, T angle
o(t+T)=wt+2r = ol =2r 60=7=27Zf

A and ¢ determined by the initial conditions of the oscillation.
*The frequency w is independent of A and ¢.



The velocity and acceleration of SHM

dx(t) jt [A cos(a)t + ¢)}

Velocity: v(t) =

V... =0A

max

v(t)=—-wA sin(a)t + ¢) =-v__ sin(a)t + q))
- The positive quantity wA is the maximum velocity v, ..
dv(l‘) d

dt

(amplitude of v)

[—a)Asin(a)qu)]

Acceleration: a(t) =

a. . =aA a(t)=-w’A cos(a)t + qb) =—a__ cos(a)t + q))

a(t)=—-w’x(t)

In SHM, the acceleration is proportional 1o the

displacement but: opposite in sig gn’ the two fj.uu"r]"r]zs
are related by the square of the angular frequency.




The velocity and acceleration of SHM
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‘Notice the n/2 phase shift

between the velocity and the
displacement.

* The acceleration is opposite in

sign to the displacement.

*One can also relate them by a

n phase shift.



The force law for SHM
F =ma=m(—0°x) =—(mw*)x

‘Note: SHM occurs in situations where the force is proportional to
the displacement, and the proportionality constant (-m®?) is

negative, I.e.,
F=—kx

*This is very familiar - it is Hooke's law.

the motion e w,sc‘lrd Dy a particle oft mass m
J to a force that iIs ,)ru,)Jr*rJquJ o the
cement of; the J),sr*chJs bul: of: opposite sign.

,.t
el

23

it

b 2 % .-%m’a‘,’:\"v’ wﬁ&v‘?ﬁ&"
i _

G a

X a AT X o ¥ R 4

SE R B e
B o e .

—X x=0 +X



Energy

0

Energy in SHM

U + KO U(t) =Lk’ = LkA’ cos’ (@t +9)
- \U©
K(t)= %mv2 = %ma)zA2 sin” (a)t + q))
K(1) But W’ = k
72 T m
“ Thus, K(t)=1kA’sin’ (@t +9)

~U(x) + K(x) E=U+K

=LkA’ [cos2 (a)t + ¢) +sin’ (a)t + (p)]

cos’ o +sin‘o =1

v Soo E=U+K=1kA’=1mv’



Simple Pendulum
Torque about P:
T =-—mgr, =—mgLsin6

46 :
=Jo=1"— :
s :9
2 7
@b __|meL sin 0
dt’ I

For small displacements, sinf = 0.
d’0 mgL

e 0
dt 1

= 6__ cos a)t+¢

&w\/@\f " Lsin® mg




Damped Simple Harmonic Motion

¢ Rigid support

{ Springiness, k

Mass m

L Vane

Damping, b

A TR e T

*When the motion of an oscillator is reduced

by an external force, the oscillator and its
motion are said to be damped.

‘Let us assume that the liquid in the figure

(left) exerts a constant damping force that
is proportional in magnitude to the velocity
(like air resistance), and opposite in sign,

Le.,

F,=-bv
*The force due to the spring is still —kx.
Thus,
—bv—kx = ma
Or
d’x dx

m—+b—+kx 0
dx? dt



Damped Simple Harmonic Motion

2% Rigid support «When the motion of an oscillator is reduced

l by an external force, the oscillator and its
motion are said to be damped.

{ Springiness, k. +| et us assume that the liquid in the figure
= (left) exerts a constant damping force that
r is proportional in magnitude to the velocity

(like air resistance), and opposite in sign.
e - The solution to
d’x  dx
m—+ b 4 k=0
dx’ dt
: —Vane .
IS . —bt/2m
Damping, b X(t) = Ae COS(G)’t + ¢)

e 2
: where ' k b
W' = -



Damped Simple Harmonic Motion
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x(t) = Ae """ cos(a)’t + qb)

If (b%/4m?) << (kim), i.e., b << (km)'?, then &'~ w

Then:

x(t) ~ Ae ¥ cos(a)t + qb)
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Damped Simple Harmonic Motion
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x(t) = Ae """ cos(a)’t + qb)
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If (b%/4m?) << (k/im), i.e., b << (km)'?, then &'~ w

* The mechanical energy is then given by:
2
E(t) z%kAz(e_at) _ %kAze_zm _ Eme_zat





